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A Novel Piece-Wise Constant Analog Spiking Neuron Model 

and its Neuron-like Excitabilities 

Yutaro Yamashita and Hiroyuki Torikai 

Abstract- A novel analog spiking neuron model which has 
a piece-wise constant (ab. PWC) vector field and can be imple­
mented by a simple electronic circuit is proposed. Using theories 
on discontinuous ODEs, the dynamics of the proposed model 
can be reduced into a one-dimensional return map analytically. 
Using the return map, it is shown that the proposed model 
can exhibit various neuron-like behaviors and bifurcations. It is 
also shown that the model can reproduce not only the individual 
neuron-like behaviors and bifurcations but also relations among 
them that are typically observed in biological and model 
neurons. 

Index Terms-Spiking neuron model, Bifurcation, Excitabil­
ity, Electronic hardware neuron 

I. INTRODUCTION 

S
PIKING neuron models and their electronic hardware 

implementations have been studied intensively, where 

many models are described by nonlinear ordinary differential 
equations (ab. ODEs) like Hodgkin-Huxlay model or nonlin­

ear ODEs with state-dependent resets like Izhikevich model 

[1]-[8]. Neurons exhibit various behaviors such as resting 

state, subthreshold oscillation, spiking state and bursting state 

(that are called neural behaviors in this paper) depending 

on stimulation inputs and parameter values. Also, neurons 

exhibit various nonlinear phenomena such as local and 

global bifurcations. It is known that neural behaviors and 

bifurcations of neurons often have closed relations, where 

typical ones are summarized in Table I [9]. So, one of 

the fundamental problems in a research of artificial spiking 

neuron modeling is to reproduce such relations. In this 

paper we propose a novel piece-wise constant (ab. PWC) 
analog spiking neuron model which can be implemented by 

a simple electronic circuit. The dynamics of the proposed 

model is described by an ODE with PWC characteristics 

together with a state-dependent reset. Using theories on 

discontinuous ODEs [10], the dynamics of the proposed 

model can be reduced into a one-dimensional return map 

analytically. Using the return map, it is shown that the 

proposed model can exhibit various neural behaviors and 

related bifurcations. It is also shown that the model can 

reproduce three out of four relations among neural behaviors 

and bifurcations in Table I (i.e., supercritical Hopf, saddle­

node off invariant circle, and saddle-node on invariant circle 

type bifurcations) that are typically observed in biological 

and model neurons. Furthermore, it is shown that the other 

bifurcation (i.e., subcritical Hopf type bifurcation) cannot 

be directly reproduced but its accompanying bifurcation can 

be reproduced. Significances and novelties of this paper 

include the following points. (1) This paper proposes an 

analog spiking neuron model having a PWC vector field for 
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TABLE I 
REPRODUCTION OF TYPICAL RELATIONS AMONG NEURAL BEHAVIORS 

AND BIFURCATIONS BY pwc ANALOG SPIKING NEURON MODEL. 

Relations among neural behaviors and bifurcations [9] 

Subthreshold 
Co-existence Reproduction by 

oscillation 
of resting and Bifurcation PWC analog spiking 
spiking states neuron model 

Supercritical 
Yes 

Yes No Scenario A 
Hopf 

in Eq.(S) 

Subcritical 
Prutially 

Yes Yes Hopr 
Scenario B 

in Eq.(6) 

Saddle·node off 
Yes 

No Yes 
invariant circle 

Scenario C 
in Eq.(I3) 

Saddle· node on 
Yes 

No No 
invariant circle 

Scenario D 
in Eq.(IS) 

the first time. Advantages of the PWC vector field include: 

easy to implement by a simple electronic circuit, easy to 

tune parameter values, and suitability for theoretical analysis 

based on theories on discontinuous ODEs [10] (compared to 

implementation methods of nonlinear ODE models [2]-[8]). 
(2) The neural prosthesis is a recent hot topic, where a typical 

approach is to prosthesize a damaged part of neural systems 

by a digital processor [11], [12]. On the other hand, sensory 

neurons should be prosthesized by analog electronic circuits 

since sensory neurons accept analog signals and it is not 

so efficient to utilize digital processor neurons together with 

analog-to-digital converters to implement them. Due to the 

advantages in the previous point (I), the proposed model is 

suitable for a sensory neuron prosthesis as well as a hardware 

pulse-coupled neural network. (3) The proposed model can 

be regarded as a generalized version of a PWC oscillator in 

[13]-[15]. However, the oscillator is designed as an abstract 

chaotic oscillator and cannot exhibit neural behaviors. 

II. PIECEWISE CONSTANT ANALOG SPIKING NEURON 
MODEL 

A novel piece-wise constant (ab. PWC) analog spiking 

neuron model is presented in Fig.l(a). The model consists of 

two capacitors, two operational transconductance amplifiers 
(ab. OTAs), a comparator, a monostable multivibrator, an 

analog switch, an amplifier, an adder, and an absolute value 

circuit. Fig.l(b) shows the characteristics of the OTA: it 

outputs a positive (negative) current if the differential voltage 

VE; = v+ - v- is positive (negative). From a viewpoint 

of neuron model, the capacitor voltages v and u can be 

regarded as an membrane potential and a recovery variable, 

respectively, as explained in the table in Fig. l .  Also, an input 

voltage Yin and a constant voltage VT can be regarded as a 

stimulation input and a spiking threshold, respectively. The 

constant voltage VT is also regarded as a spike cut-off level 
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I PWC spiking neuron I Meaning as a neuron model 

Capacitor voltage v Membrane potential 

Capacitor voltage u Recovery variable 

Input voltage Vin Stimulation input 

Constant voltage VT Spiking threshold 

Spike-train Y Output firing spike-train 

Fig. I. PWC analog spiking neuron model. (a) Electrical circuit model. 
COMP and MM represent the monostable multivibrator and the comparator, 
respectively. (b) Characteristics of the operational transcondu.ctance ampli­
fier (ab. OTA). 

[9]. If the membrane potential v reaches the spiking threshold 
VT , the comparator (COMP) triggers the monostable multivi­
brator (MM) to generate a spike Y = E. The spike Y = E 

closes the analog switch S for a short time, and then the 
membrane potential v is reset to a constant value B which 
is called a reset base. From a viewpoint of neuron model, 
the spike Y = E is regarded as a firing spike or an action 
potential as explained in the table in Fig.l . The dynamics of 
the PWC analog spiking neuron model is described by the 
following equation. 

{ Cv = Iv(lvl + Yin -u) 
Cu = Iu(av -u) 

if v < VT, 

v(t+) = B if v(t) = VT, 

if Vc > 0 

if Vc < 0 

if Vc > 0 

if Vc < 0 

if v(t) = VT 
if v(t) < VT 

(I) 

where "." represents the time derivative, t+ represents 
limc-Ho(t + c) , Lt, I;;, I;t, I;: > 0 are assumed, and 

v(O) :S VT is assumed. In the whole state space 

S == {(v, u)lv :S VT}, 

the following two borders are defined by the control voltages 
of the two OTAs (see also Fig.2(a)): 

v-nullcline: Nv == {(v, u)lu = Ivl + Yin}, 
u-nullcline: Nu == {(v,u)lu = av}, 

v 

Jjl--------

SRS 
BI------­

Y 

E1··················································. 

-E ) t B v 

(a) Stable resting State (SRS). 

v 

BI-------
y 

E1"'"'''''''''''''''''''''''''''''''''''''''''''''' 

-E )1 B v 

(b) Co-existence of stable subthreshold oscillation (SSO) and 
unstable resting state (URS). 

v 

B I-L........L-....L..� __ 

Y � L'.1)( L'.,>� L'.) 
E
t······f·······j········[········]········· ... 

-E )t B v 

(c) Co-existence of stable tonic spiking (STS) and unstable 
resting state (URS). 

Fig. 2. Basic behaviors of the PWC analog spiking neuron model. 

where " == " represents the "definition" hereafter. Since 
the borders play the same roles as nullclines of a smooth 
nonlinear ODE, the borders are called v -nullcline and u­
nullcline. The nullclines divide the whole state space S into 
at most four subspaces having the following four vector fields 
(see also Fig.2(a)): 

(v, u) = { V++ == (1: /C, I: /C) 
V-+ == (1;; /C, I: /C) 
V+- == (1: /C,1;; /C) 
V-- == (1;; /C, I;; /C) 

if u < Ivl + Yin and u < av, 
ifu> Ivl + Yin and u < av, 
ifu < Ivl + Yin and u > av, 
ifu> Ivl + Yin and u > avo 

According to [10], the dynamics of the state (v, u) on the 
nullclines Nv and Nu can be categorized into sliding mode 
and non-sliding mode (we also say "without sliding mode"). 
In the following Sections III and IV, neuron-like excitabilities 
of the PWC analog spiking neuron model without and with 
the sliding modes are studied, respectively. 

III. EXCITABILITIES WITHOUT SLIDING-MODE 

In this section we assume 
I+ I+ I- I-

I <....:!!:... ....:!!:... ....:!!:... ....:!!:... < a (2) 
I: ' I;; 

, 
I;; 

, 
I: 

. 
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Fig. 3_ Phase-plane trajectory and return map F. 

In this case, according to [10], the nullclines Nv and Nu 
have no sliding mode dynamics. Then the dynamics of the 
state vector (v, u) on the nul1clines Nv and Nu can be 
described by 

1 
v++ 
v+­

(v, u) = v-+ 
v--
(0,0) 

if(v, u) E Nu and u < Ivi + Yin, 
if (v,u) E Nv and u > av, 
if (v,u) E Nv and u < av, 
if (v, u) E Nu and u > Ivl + Yin, 
if (v, u) E Nv n Nu, 

where the state vector (v, u) is continuous before and af­
ter crossing a nullcline. Fig.2 shows the following typical 
neuron-like behaviors of the PWC analog spiking neuron 
model. 

Resting state. The intersection point So = Nv n Nu 
of the two nullclines (see Fig.2(a» is an equilibrium point 
since (v, u) = (0,0) at the point (v, u) = So. In the case 
of Fig.2(a), any nearby point of the equilibrium point So is 
attracted into So. From a neuron model viewpoint, such a 
phenomenon is called a stable resting state (ab. SRS) [9]. 
In the case of Fig.2(b), any nearby point of the equilibrium 
point So is repelled from So. Such a phenomenon is called 
an unstable resting state (ab. URS). 

Subthreshold oscillation. In the case of Fig.2(b), the state 
vector (v, u) continues to oscillate periodically under the 
spiking threshold VT. From a neuron model viewpoint, such 
a phenomenon is called the periodic subthreshold oscillation 
[9]. If any nearby point is attracted into a periodic subthresh­
old oscillation, it is called a stable periodic subthreshold 
oscillation (ab. SSO). If any nearby point is repelled from 
a periodic subthreshold oscillation, it is called an unstable 
periodic subthreshold oscillation (ab. USO). 

Tonic spiking. In the case of Fig.2(c), the state vector 
(v, u) continues to fire periodically. From a neuron model 
viewpoint, such a phenomenon is called a tonic spiking [9]. 
If any nearby point is attracted into a tonic spiking orbit, it 
is called a stable tonic spiking (ab. STS). If any nearby point 
is repelled from a tonic spiking orbit, it is called an unstable 
tonic spiking (ab. UTS). 

In order to analyze these phenomena, we derive a return map 
as the followings. As shown in Fig.3(a), let an initial state 
of (v, u) on the u-nul1cline Nu be denoted by (vn, un). The 
point (vn, un) E Nu can be represented by its v-coordinate 

vn E (-00, VT]' The trajectory starting from (vn, un) returns 
into the u-nullcline Nu after visiting some of the vector fields 
{V++, V+-, V-+, V--, (O,O)}. As shown in Fig.3(a), let 
the return point of (v, u) on the u-nul1cline Nu be denoted 
by (vn+l,Un+1). Then the dynamics of the state Vn is 
described by the following one-dimensional return map F 
(see Fig.3(b». 

Vn+1 = F( vn), F: (-00, VT] --+ (-00, VT], 

where n = 1,2,3" " . For simplicity, 

B= -VT, r!; =1;;, 1:;t: =1;;, 1:;t: j r!; =b, 1 <b<a (3) 

are assumed in this paper. Then the following analytic 
formula of the return map F can be derived. 

vn+l = F(vn) = 
a - b  
a+bvn if 

2bVin-(1)+-1) (a-b)vn 
if 

(b-1)(a-tb) 

2b Vi,,-( b-1) (a-b) Vn 
if 

(1)+-1) (a-tb) 

2bV;,,-(b-1) (a+b)vn 
if (1)+-1)(a-tb) 

-(b-1)VT 
E:Svn < a-b ' 

(b-1Wr <v <V a-b - n TR, 

VTR :S Vn < VT, 

Vn = VT, 

(4) 

where VTR == Yinj(a - b). As shown in Figs.3(a) and 3(b), 
the value VTR decides spiking or not, i.e., any trajectory 
starting from (vn, un) E Nu leads to a spiking if Vn < VTS 
and does not lead to a spiking if VTS :S Vn < VT. Hence we 
have the following proposition. 

Proposition 1: Assume Equations (2) and (3) are satisfied. 
If the return map F has a fixed point Vrs = F(vrs) > VTR 
and if the slope of the map satisfies IdF( vrs) j dVn I < 1 
(ldF( vrs) j dVn I > 1), then the PWC analog spiking neuron 
model exhibits a stable resting state (unstable resting state). 
If the return map F has a periodic point Vso = FP(vso), 
Vso -=I- Fq(vso) for 1 :S q < p whose orbit points 
(vso, F(vso)," . ,FP-1(vso)) are greater than VTR and if the 
slope of the composed map satisfies IdFP(F(vso))jdvnl < 1 
(ldFP(F(vso))jdvnl > 1), then the PWC analog spiking 
neuron model exhibits a stable periodic subthreshold oscilla­
tion (unstable periodic subthreshold oscillation). If the return 
map F has a fixed point Vts = F( Vts) < VT R and if the slope 
of the map satisfies IdF(vts)jdvnl < 1 (ldF(vts)jdvnl > 1), 
then the PWC analog spiking neuron model exhibits a stable 
tonic spiking (unstable tonic spiking). 

We can confirm this proposition in FigA. In FigA(a), the 
return map has a stable fixed point Vrs > VTR and thus 
the PWC analog spiking neuron model exhibits a stable 
resting state. In FigA(b), the return map has stable periodic 
points Vso1 > VTR and Vso2 > VTR, and thus the PWC 
analog spiking neuron model exhibits a stable subthreshold 
oscillation. In FigA(c), the return map has a stable fixed 
point Vts < VTR and thus the PWC analog spiking neuron 
model exhibits a stable tonic spiking. In the following two 
subsections, we analyze bifurcation phenomena and related 
neural excitabilities of the PWC analog spiking neuron 
model. 
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A. Supercriticai Hop! type border-collision bifurcation 

In Fig.4(a), there exists a stable resting state. In Fig.4(b), 

the stimulation input \!in is increased. In this case the stable 

resting state is changed into an unstable resting state and the 

model exhibits a stable periodic subthreshold oscillation (see 

also Fig.S(a». This change of phenomena (i.e., unstabiliza­

tion of the resting state and birth of the stable periodic sub­

threshold oscillation) is caused by the discontinuous change 

of the slope of the return map F at the resting state Vrs 

that is referred to as the border-collision bifurcation [10]. In 

addition, the change of phenomena has qualitative similarities 

to the supercriticai Hop! bifurcation [16]. Hence the change 

of phenomena between Figs.4(a) and 4(b) is refened to 

as a supercriticai Hop! type border-collision bifurcation. In 

Fig.4(c), the input \!in is further increased. Then the stable 

periodic subthreshold oscillation is changed into a stable 

tonic spiking. This change of phenomena is caused by an 

effect of the spiking threshold VT and is again referred 

to as the border-collision bifurcation [10]. As a result, the 

mechanisms (i.e., scenario) of the excitability from / to the 

stable resting state in Fig.4(a) to / from the tonic spiking in 

Fig.4(c) can be summarized as follows. 

Excitability scenario A: 

{SRS} 
t 

{URS, SSO} 
t 

{URS, STS} 

Supercritical Hopf type 

border-collision bifurcation 

Border-collision bifurcation 

(5) 

By using the return map F, we can derive the following 

sufficient parameter condition for the excitability scenario 

A. 

The PWC analog spiking neuron model exhibits 

the excitability scenario A if a > b2. 

Fig.4(d) shows a bifurcation diagram for the stimulation 

input \!in, where the anows ct and (3 indicate the supercrit­

ical Hopf type border-collision bifurcation and the border­

collision bifurcation, respectively. Fig.4(e) shows character­

istics of the spiking frequency f defined by 

f = (�I limM ..... oo L;;:=l 6.m) -1 

where 6.m is the m-th inter-spike interval in the output 

spike-train Y(t) as shown in Fig.2(c). We emphasize that 

Izhikevich's simple neuron model exhibit a similar bifurca­

tion scenario in Equation (5) and that the supercritical Hopf 

bifurcation is one of the typical mechanisms of excitabilities 

of biological and model neurons as explained in Table I. 

B. Fold limit cycle type border-collision bifurcation 

In Fig.6(c), the model exhibits co-existence of an stable 

resting state and a stable tonic spiking (see also Fig.S(b». 

As the input \!in is decreased, the attraction domain of the 

stable resting state approaches to the stable tonic spiking. 

In the case of Fig.6(b), the attraction domain of the stable 

resting state touches the stable tonic spiking. If the input \!in 

N" 

·10L-��.......L.�...l..-��..........J 

u 

·12 8=·5 V,=5 
V � 

(a) Stable resting state (SRS). Vin = -5. 

N, 

o 0 :URS o:URS 
'! 1'-::2---*8=� .""5 �-":C-�...-...,JV',= 5 ·10 "'-��_�_��-......J 

V ·10 Vn 0 5 
(b) Co-existence of unstable resting state (URS) and stable periodic 
subthreshold oscillation (SSO). Yin = 3. 

16r---,,----r-, 
N" URS 

u 

o 

'.11L2---:!-8= �.5::--'"---"�-""'V ,= 5 ·10 "'-��_�_��-......J 
V ·10 Vn 0 5 

(C) Co-existence of unstable resting state (URS) and stable tonic spiking 
(STS). Yin = 10. 

STS 

20 

,�,----��----, 
� STS 

,()() ................. -1-, -.....;....;;..-..., 

(J. : 

SRs+ssoi 
o"�O-�5-�O"""":'3�-':;;-O------;� (a) (b) V;, (e) 

(e) 

Fig. 4. Excitability scenario A in Equation (5). The parameters of the PWC 
analog spiking neuron model are a = 5.0, It = I;; = 1.0, It = I;; = 
2.0, VT = 5.0, B = -VT = -5.0, and C = 1.0 X 10-3. (d) Bifurcation 
diagram. The arrows a and (3 indicate the supercritical Hopf type border­
collision bifurcation and the border-collision bifurcation, respectively. (e) 
Characteristics of the spiking frequency f. 

V,,,S 

sso 

6 .. ·5 ... ·5 

0.05 0 0.05 
Y 

:1 :1 
(a) (b) 

Fig. 5. Neuron-like time waveforms of v and y, The parameter values in 
(a) and (b) are identical with those in Fig.4(b) and Fig.6(c), respectively. 
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(b) Fold limit cycle type border-collision bifurcation. 1I,;n = 7.5. 
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N, 

V �O 

(c) Bistability. 1I,;n = 10. 

u 

v, 

-1L-��.......L��...L..�� 
-12 B=-5 

V � 0 

(d) Stable tonic spiking (STS). Yin = 20. 

o 3 7.5 10 

(a) (b) (c) 
V" 

(e) 

STS 

20 25 

(d) 

'2O,--__ ----:y,,---_....,,---, 
'00 _________________ .;..1 ..... """'-__ -1 

O,·I".O--�O�3....,,�--....;:-----:'25 

(a) 

Fig. 6. Excitability scenario B in Equation (6). The parameters of the PWC 
analog spiking neuron model are a = 5.0, It = I;; = 1.0, It = I;; = 
2.5, VT = 5.0, B = -VT = -5 . 0, and C = 1.0 X 10-3. (e) Bifurcation 
diagram. The arrows 'Y and (3 indicate the fold limit cycle type border­
collision bifurcation and the border-collision bifurcation, respectively. (f) 
Characteristics of the spiking frequency f. 

N" V 
;:-

-
a2'-�-----B.l...=3----lVT= 5 

V 
(a) 

u 

N"(V"ij) 

V 
(b) 

Fig. 7. Sliding mode dynamics and return map G. (a) Sliding vector fields 
V}, V2, and V3. (b) Phase-plane. 

is further decreased, the stable tonic spiking is eaten by the 

attraction domain of the stable resting state and is vanished. 

This change of phenomena (i.e., vanish of the stable tonic 

spiking by the attraction domain of the stable resting state) 

is caused by the discontinuity of the return map F and 

has qualitative similarities to the fold limit cycle bifurcation 
[16]. Hence the change of phenomena between Figs.6(a) and 

6(b) is referred to as a fold limit cycle type border-collision 
bifurcation, In Fig,6(d), the input Yin is increased compared 

to Fig,6(c), In this case the stable resting state is vanished 

due to the discontinuity of the return map F, As a result, the 

mechanisms (i.e., scenario) of the excitability from / to the 

stable resting state in Fig.6(a) to / from the tonic spiking in 

Fig.6(d) can be summarized as follows. 

Excitability scenario B: 

{SRS} 

t 

{SRS, STS} 

t 

{STS} 

Fold limit cycle type 

border-collision bifurcation 

Border-collision bifurcation 

(6) 

By using the return map F, we can derive the following 

sufficient parameter condition for the excitability scenario 

B. 

The PWC analog spiking neuron model exhibits 

the excitability scenario B if a < 62. 

Fig.6(e) shows a bifurcation diagram for the stimulation input 

Yin, where the arrows 'Y and f3 indicate the fold limit cycle 

type border-collision bifurcation and the border-collision 

bifurcation, respectively. Fig.6(t) shows characteristics of 

the spiking frequency f. We emphasize that the the fold 

limit cycle bifurcation is often observed near a subcritical 

Hopf bifurcation which is one of the typical mechanisms of 

excitabilities of biological and model neurons as explained 

in Table I. 

IV. EXCITABILITIES WITH SLIDING-MODE 

In this section we assume 

I+ I- I- I+ 
0 < a < 1, a < /i' a < 

I
� , 0 < /i < 1, 1 < 

I
� . (7) 

In this case, according to [10], the dynamics of the state 

vector (v, u) on the nullclines Nv and Nu can be described 
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by the following so-called sliding mode dynamics (see also 
Fig.7(a)). 

(0,0) 

where 

if u = av and (v < \/;" or - Vi" <v < VT) a+I I-a ' 

if u = av and Vi" < V < _ Vi" 
a+I I-a' 

if u = -V + v: and v < \/;" and v < 0 .n a+I ' 

if u = av and u = Iv l + Vin, 

v = It -aIt V+- + I;-; +aI,; v++ 
1 - I;l +I� I;l H.� , 

V = I,-; -aI,-; V-+ + It +aI;;-V--
2 - rtH� rtH� ' 

V = I,-;- I,-;V+- + ItH,-;V--
3 - I;J H;; I;J H;; . 

(S) 

(9) 

In order to analyze the PWC analog spiking neuron model 
with the sliding mode, we derive another return map as 
the followings. As shown in Fig.7(b), let an initial state 
of (v, u) on the u-nullcline Nu be denoted by (vn,iin), 
where "..." implies the sliding mode in this section. The 
point (vn, un) E Nu can be represented by its v-coordinate 
vn E (-00, VT]. The trajectory starting from (vn, un) returns 
into the u-nullcline Nu after visiting some of the vector fields 
{V++, V+-, V-+, V--, (0,0), Vi, V2, V3} including the 
sliding mode vector fields Vi, V2, and V3. As shown in 
Fig.7(b), let the return point of (v, u) on the u-nullcline 
Nu be denoted by (Vn+I, Un+I), where if a sliding mode 
trajectory reach a stable equilibrium point, then the stable 
equilibrium point is defined as the return point. Then the 
dynamics of the state vn is described by the following one­
dimensional return map G (see Fig.S(b)). 

Vn+! = G(vn), G: (-00, VT] -+ (-00, VT], 

where n = 1,2,3, . . . . For simplicity, 

I;; II;; = b, -I;; IT;; = C,c < 0 < a < 1 < b (10) 

are assumed in this paper. Then the following analytic 
formula of the return map G can be derived. 

\/;." if a+I 

VT if 

VT if 

VR if 

v < - \/;" n - I-a and Vin ::; 0, 

- Vi" <V <VT l-a - n , 

Vin >0 and Vn<VT, 

Vn = VT, 

(I I) 

where VR is a constant defined by the parameters (a, B, VT) 
and the input Vin. Depending on the value of VR, the PWC 
analog spiking neuron model exhibits the following two types 
of excitability scenarios. 
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u 
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(a) Stable Resting State (SRS). Vin = -2. 

Vn+1 

Attraction 
Domain 
ofSRS 

G 
URS 

SRS 

6 

v 
-1�1":.. O���--_�O ---''------.J· Vn 

(b) Bistability. Vin = -1. 

G 
N, 

STS 
u 

N" 

-3-2'--���-�-' B=- 3�---'V,= 5 -1�10 _ 0 V � 
(c) Stable Tonic Spiking (STS). Vin = 1. 

600 

STS , STS 

vno � \ 

� �p 

SRS ., 0 
·10 -2-101 20 ·10 -2-101 20 

(aXb) (c) Vi" (aXb)(c) Vi" 
(d) (e) 

Fig. 8. Excitability scenario C in Equation (13). The parameters of the 
PWC analog spiking neuron model 2U'e a = 0.5, It = 1.0, I;; = 0.1, 
It = I;; = 0.75, VT = 5.0, B = 3.0, and C = 1.0 X 10-3. (d) 
Bifurcation diagram. The 2UTOWS 'f} and p indicate the saddle homoclinic 
type border-collision bifurcation and the saddle-node off invariant circle type 
border-collision bifurcation, respectively. (e) Characteristics of the spiking 
frequency f. 
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Fig. 9. Neuron-like time waveforms of v and Y. The p2U'ameter values in 
(a) 2Uld (b) are identical with those in Fig.8(b) and Fig.IO(b), respectively. 
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A. S-N off invariant circle type border-collision bifurcation 

We assume aVT < B < VT. In this case the constant VR 
of the return map G in Equation (11) is given by 

VR= 

- b-a ·If T T. < ( _ 1) bB-aVT Yin _ a b-a ' 
{ bB-aVT 

(b-c)V;,,+{l-c)(bB-a V"d 
(a-c )( b-l) if (a_1)b�VT <Vin<aVT-B,(12) 

aV"r-cB 
a-c if aVT - B ::; Vin. 

Fig.8 shows some return maps G and corresponding phase­
plane trajectories. In Fig.8(b), the model exists co-existence 
of two stable phenomena: a stable resting state and a 
stable tonic spiking (see also Fig.9(a». From a viewpoint 
of neuron model, this phenomena is called the bistability 
[9]. In Fig.8(a), the input Vin is decreased. In this case 
the stable tonic spiking is eaten by the attraction domain 
of the stable resting state. This change of phenomena (i.e., 
vanish of stable tonic spiking by the attraction domain of 
the stable resting state) is the border-collision bifurcation 

[10]. In addition, the change of phenomena has qualitative 
similarities to the saddle homoclinic bifurcation [16]. Hence 
the change of phenomena between Figs.8(a) and 8(b) is 
referred to as a saddle homoclinic type border-collision bi­

furcation. In Fig.8(c), the input Vin is increased compared to 
Fig.8(b). In this case the stable resting state vanishes since the 
intersection of the nullclines vanishes. Since the nullclines 
are the borders of vector fields, this change of phenomena is 
the border-collision bifurcation [10]. In addition, the change 
of phenomena (i.e., vanish of the stable resting state due to 
the vanish of the intersection of the nullclines) has qualitative 
similarities to the saddle-node off invariant circle bifurcation 

[16]. Hence the change of phenomena between Figs.8(b) 
and 8(c) is referred to as a saddle-node off invariant circle 

type border-collision bifurcation. As a result, the mechanisms 
(i.e., scenario) of the excitability from / to the stable resting 
state in Fig.8(a) to / from the tonic spiking in Fig.8(c) can 
be summarized as follows. 

Excitability scenario C: 

{SRS, URS} 

t 
{SRS, URS, STS} 

t 
{STS} 

Saddle homoclinic type 
border-collision bifurcation 

Saddle-node off invariant circle 
type border-collision bifurcation 

( 13) 

Fig.8(d) shows a bifurcation diagram for the stimulation 
input Vin, where the arrows 'T) and p indicate the saddle 
homoclinic type border-collision bifurcation and the saddle­
node off invariant circle type border-collision bifurcation, 
respectively. Fig.8(e) shows characteristics of the spiking 
frequency f. We emphasize that Izhikevich's simple neuron 
model exhibit a similar bifurcation scenario in Equation (13) 
and that the saddle-node off invariant circle bifurcation is 
one of the typical mechanisms of excitabilities of biological 
and model neurons as explained in Table I. 
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Fig. 10. Excitability scenario 0 in Equation (15). The parameters of the 
PWC analog spiking neuron model are a = 0.5, It = 1.0, I;; = 0.01, 
I;; = I;; = 0.75, VT = 5.0, B = 0.0, and C = 1.0 X 10-3. (e) 
Bifurcation diagram. The arrow a indicates the saddle-node on invariant 
circle type border-collision bifurcation. (f) Characteristics of the spiking 
frequency f. 
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B. S-N on invariant circle type border-collision bifurcation 

Here we assume B = O. In this case the constant VR of 
the return map G in Equation (11) is given by 

VR� { - b�a VT 
\1.;,71. 
a-c 
aVr 
a-c 

if Yin < 0, 

if 0::; Yin < aVT, (14) 

if Yin � aVT· 

In Fig.lO(c), there exists a stable tonic spiking. As the 
input Yin is decreased, as shown in Fig.1 O(b), the stable 
tonic spiking includes a point at which the minimum of 
the v-nullcline Nv touches the u-nullcline Nv (see also 
Fig.9(b». As the input Yin is further decreased, as shown in 
Fig.lO(a), the stable tonic spiking is eaten by the attraction 
domain of the stable resting state and then the stable tonic 
spiking is vanished. This change of phenomena is caused 
by the discontinuity of the return map G and thus it is the 
border-collision bifurcation [10]. In addition, the change of 
phenomena has qualitative similarities to the saddle-node 

on invariant circle bifurcation [16]. Hence the change of 
phenomena among Figs.IO(a), lOeb), and lO(c) is referred 
to as a saddle-node on invariant circle type border-collision 

bifurcation. This mechanism (i.e., scenario) of the excitability 
from / to the stable resting state in Fig.lO(a) to / from the 
tonic spiking in Fig.lO(d) can be summarized as follows. 

Excitability scenario D: 

{SRS, URS} 

t 
{STS} 

Saddle-node on invariant circle 
type border-collision bifurcation 

(15) 

In Fig.lO(d), the input Yin is increased compared to 
Fig.IO(c). In this case the model exhibits a stable tonic 
spiking with a higher spiking frequency f. Fig.IO(e) shows a 
bifurcation diagram for the stimulation input Yin, where the 
arrow a indicates the saddle-node on invariant circle type 
border-collision bifurcation. Fig.IO(f) shows characteristics 
of the spiking frequency f. We emphasize that Izhikevich's 
simple neuron model exhibit a similar bifurcation scenario 
in Equation (15) and that the saddle-node on invariant circle 
bifurcation is one of the typical mechanisms of excitabilities 
of biological and model neurons as explained in Table I. 

V. BURSTING W ITH SLIDING-MODE 

We assume 1 < a, It /1;; < 1, I;; /1;; < 1, and B > 

O. In this case, the PWC spiking neuron may exhibit tonic 

bursting [9] as shown in Fig.l I .  According to [ 9], the tonic 
bursting is one of the most fundamental neurocomputational 
properties of biological neurons. The bifurcation analysis of 
the tonic bursting is omitted in this paper due to the page 
length limitation and will be presented in a future paper. 

V I .  DISCUSSIONS AND CONCLUSIONS 

We have proposed the novel piece-wise constant (ab. 
PWC) analog spiking neuron model. Using the analytical 
return maps, it has been shown that the model can re­
produce the typical relations among neural behaviors and 

0 ·3 
0 0.1 

Y(J) 

0 
v 

B=3 VT=5 .:t 1111 1111 1111 
(a) (b) 

Fig. I I. Tonic bursting. The parameters of the PWC analog spiking neuron 
model are a = 5.0, It = 1.0, I;; = It = I;; = 0.3, VT = 5.0, 
B = 3.0, C = 1.0 X 10 -3, and Vin = O. (a) Phase Plane. (b) Time 
waveforms of v and Y. 

their underlying bifurcations as explained in Table I. Future 
problems include: (a) implementation of this model in an 
actual hardware, (b) reproduction of a subcritical Hopf type 

bifurcation which leads to a monostability and a subthreshold 
oscillation, and (c) more in-depth theoretical analysis of 
excitability and bifurcations. 
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